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Abstract. Two-dimensional spin-1/2 Heisenberg antiferromagnets with nonmagnetic or ferro-
magnetic impurities are studied using an improved Green’s function theory and quantum Monte
Carlo simulations over the whole temperature region. The antiferromagnetic spin correlation
functions at the bonds closest to the impurities are found to be enhanced in both the nonmagnetic
and ferromagnetic impurity cases at all temperatures. For the nonmagnetic impurity case, our
numerical results for spin correlation functions and ground-state energies agree with those from
previous Monte Carlo simulations. For the ferromagnetic impurity case, we found that the spin-
wave excitations are strongly influenced by the impurities. Discrete local modes emerge above the
continuous spin-wave excitations. The effects of the distance between two ferromagnetic impurities
on the local modes are also investigated.

1. Introduction

Impurity effects in cuprate superconductors have attracted much attention from researchers
attempting to achieve an understanding of the role of electron correlations in high-temperature
superconductivity [1,2]. The extreme limit of static holes or magnetic defects is also believed
to have physical relevance to this issue. Accordingly, there have been many experiments [3–5]
addressing the problem of impurity states in the antiferromagnetic (AF) parent compounds of
high-TC superconductors. The most representative case is that of nonmagnetic Zn substitution
for Cu in the CuO2 plane of La2Cu1−xZnxO4.

The two-dimensional (2D) site-random (SR) Heisenberg model can be used to describe
the CuO2 plane with a random distribution of static holes or magnetic defects. There have
been many theoretical studies carried out to investigate the magnetic properties of the 2D
SR Heisenberg model. Examples include work based on the linear spin-wave (LSW) theory
[6, 7] and the coherent potential approximation [8, 9], exact-diagonalization studies [10], and
quantum Monte Carlo (QMC) simulations [11–13]. However, there are still discrepancies
among the results from analytical theories and computer simulations.

In 2D, the Heisenberg model does not exhibit long-range order (LRO) for any spin at
finite temperature [14]. There is, however, solid numerical evidence that the ground state
of the spin-1/2 AF Heisenberg on a square lattice is characterized by AF LRO [15] (for
S > 1/2, the existence of long-range order has been proven rigorously [16]). A second-order
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Green’s function (SOGF) theory [17,18] has been quite successfully used in studying the low-
dimensional Heisenberg model over the whole temperature region. For finite temperatures,
Shimahara and Takada [18] found that the low-lying excitation of the 2D AF Heisenberg
model is a kind of spin wave propagating against a background of short-range AF order, and
their spin-wave spectrum depends only on the short-range spin correlation functions. In the
ground state, the SOGF theory predicts the existence of AF LRO dual to Bose condensation,
and the spin-wave spectrum is analogous to that of the LSW theory [20]. It has been proved
that [17, 18], at high temperature, this theory reproduces correctly the results obtained by the
high-temperature expansion method [21]. On the other hand, the results at low temperature
are similar to those from the modified spin-wave theory [22]. Results from SOGF theory are
in qualitative agreement with numerical results [23, 24] over the whole temperature region.

The SOGF theory has been successfully applied to many low-dimensional homogeneous
systems [17, 18, 25, 26]. In an earlier work [27], we introduced an improved decoupling
approximation and examined our new method by studying the 2D Heisenberg model with
broken bonds. It has been shown that the improved SOGF theory [27] is applicable to spin
systems with spatial inhomogeneity introduced by the local defects. In this paper, we have
applied the improved SOGF theory to study the 2D SR Heisenberg model. We have also
performed quantum Monte Carlo simulations for comparison.

The paper is organized as follows. In section 2 we introduce the SR Heisenberg model
and the improved SOGF theory. Our numerical results for the 2D SR Heisenberg model with
nonmagnetic and ferromagnetic impurities are presented in section 3 and section 4, respectively.
Finally, we conclude with our findings in section 5.

2. The SR Heisenberg model and improved SOGF theory

Consider the SR spin system described by the following Hamiltonian:

H =
∑
〈ij〉

Jijninj

{
1

2
(S+

i S
−
j + S−

i S
+
j ) + Szi S

z
j

}
(1)

where 〈ij〉 denotes a sum over nearest-neighbour (NN) bonds (there are a total of 2N bonds for
an N -site 2D lattice), ni is a random variable taking the value of 1 or 0 according to whether
or not the site i is occupied by a magnetic atom, and Jij is the exchange interaction between
sites i and j .

We introduce the spin Green’s functions G via

G(i − j, t − t ′) = −iθ(t − t ′)〈[niSzi (t); njSzj (t ′)]〉 ≡ 〈〈S̃zi (t); S̃zj (t ′)〉〉 (2)

where θ(t) is the step function, S̃zi = niS
z
i , and 〈· · ·〉 defines the ensemble average. Since the

Fourier transform of the double-time Green’s function satisfies the following equation:

ω〈〈A;B〉〉ω = 1

2π
〈[A,B]〉ω + 〈〈[A,H ];B〉〉ω (3)

the equation of motion of the spin Green’s function G can be evaluated as

ωG(i − j, ω) =
∑
η

Ji,i+ηni〈〈S̃+
i S̃

−
i+η − S̃+

i+ηS̃
−
i ; S̃zj 〉〉ω (4)

with η = x̂, ŷ, S̃+
i = niS

+
i , and S̃−

i = niS
−
i . Going a step further, we establish the equation of
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motion of the higher-order spin Green’s function:

ω〈〈S̃+
i S̃

−
i+η − S̃+

i+ηS̃
−
i ; S̃zj 〉〉ω = nj (〈S̃+

i S̃
−
i+η〉 + 〈S̃−

i S̃
+
i+η〉)(δi+η,j − δi,j )

+ 2Ji,i+ηnini+η〈〈ni+ηS̃zi − niS̃
z
i+η; S̃zj 〉〉ω

+
∑
η′ �=η

〈〈�i(η, η
′)−�i+η(−η,−η′); S̃zj 〉〉ω (5)

where

�i,i+η = 2Ji,i+η′ni[(S̃
+
i+η′ S̃

−
i+η + S̃−

i+η′ S̃
+
i+η)S̃

z
i − (S̃+

i S̃
−
i+η + S̃−

i S̃
+
i+η)S̃

z
i+η′]. (6)

As described in reference [27], we use an improved decoupling scheme:

〈〈S+
mS

−
n S

z
i ; Szj 〉〉 → βm〈S+

mS
−
n 〉βn〈〈Szi ; Szj 〉〉 (7)

and rewrite the equation of motion for the spin Green’s function G:

ω2G(i − j, ω) =
∑
η

{
Ji,i+ηni

[
4njC(i, i + η)(δi+η,j − δi,j )

+ 2Ji,i+ηnini+η〈〈ni+ηS̃zi − niS̃
z
i+η; S̃zj 〉〉

+
∑
η �=η′

〈〈�i(η, η
′)−�i+η(−η,−η′); S̃zj 〉〉

]}
(8)

with

�i(η, η
′) = 8Ji,i+η′ni[βi+ηβi+η′C(i + η, i + η′)S̃zi − βi+ηβiC(i, i + η)S̃zi+η′]

C(i, j) = 1

2
〈S̃+

i S̃
−
j 〉 = 〈S̃zi S̃zj 〉.

(9)

Since lattice translational invariance is not present in the inhomogeneous case, we can
only solve the above equations in real space. On a finite lattice, the spin Green’s function G

can be expressed in a matrix form G̃, and equation (8) can be rewritten as

ω2G̃− h̃ G̃ = C̃ (10)

where the matrices h̃ and C̃ are determined by the NN, second-NN, and third-NN spin
correlation functions. Thus we obtain the self-consistent equations for determining the spin
correlation functions and the vertex correction parameters βi for each site i. Previously, we
have compared our results for the 8×8 lattice for the homogeneous case to those for the infinite
lattice obtained by Shimahara and Takada [18] and the agreement was good [27]. That is, our
numerical calculations can give reasonable estimates for problems in the infinite spin systems
that we are interested in.

3. Nonmagnetic impurity case

In this section, we study the local effect of nonmagnetic impurities in 2D Heisenberg anti-
ferromagnets. Our numerical calculations are for the 8 × 8 lattice with periodic boundary
conditions. For this system with only one impurity, our numerical results for the NN cor-
relation functions near the isolated nonmagnetic impurity at temperature T = 0.05 (measured
in units of J ) are displayed in figure 1. We find that the nonmagnetic impurity enhances the
NN AF correlation functions for spins close to it; that is, the quantum fluctuation for spins
close to the nonmagnetic impurity is reduced. The largest value of the NN correlation function
in figure 1 is C1 = −0.1155, which is about 10% higher than that for the NN correlation
function, C1 = −0.1035, of the homogeneous 8 × 8 lattice. Behre and Miyashita [12] have
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Figure 1. Nearest-neighbour correlation functions for the 8 × 8 lattice with one nonmagnetic
impurity at temperature T/J = 0.05. The open circle represents the nonmagnetic impurity.

applied a QMC technique to this model and found that NN correlations which are further away
from the impurity are enhanced by more than 4% for the 4×4 lattice at temperature T = 0.05.
Our results are in agreement with those of QMC simulations [11, 12]. At zero temperature,
Bulut et al [7] have studied this model using the LSW theory and their results also showed that
quantum fluctuation is reduced in the neighbourhood of the static vacancy.

We have investigated the 8 × 8 lattices with two (the doping density is n = 0.031 25)
and four (n = 0.0625) nonmagnetic impurities, respectively, by performing configuration
averaging over the randomness of the impurity positions. The average spin correlation function
C(r) in our calculation is defined as

C(r) =
(∑

i

〈Szi Szi+r〉
)/

N =
[∑

i

(∑
m

〈Szi Szi+r〉m
)/

M

]/
N (11)

where M is the number of samples. The distance dependences of the average spin correlation
functions C(r) for n = 0.0625 and n = 0 are shown in figure 2(a). For convenience of
comparison, the results of the QMC simulation on the 8 × 8 lattice [12] are also plotted in
figure 2(a). Our results are in fairly good agreement with those from the QMC simulations
[11,12]. We found that, as the doping density n increases, the average spin correlation function
C(r) decreases. Our numerical results also show that although the quantum fluctuation for
spins close to the nonmagnetic impurities is reduced, the average of the quantum fluctuations
over the whole lattice is strengthened. The ground-state energies as functions of doping density
n are plotted in figure 2(b). It shows that the absolute value of the ground-state energy decreases
as the density of nonmagnetic impurities increases, which is in agreement with the results from
MC simulations [11, 12].
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Figure 2. (a) The distance dependence of the average spin correlation function C(r). (b) The
average intrinsic energy versus doping density.

4. Ferromagnetic impurity case

In this section, we consider the 2D Heisenberg antiferromagnet with ferromagnetic impurities.
This system is a mixture of two kinds of magnetic ion A (antiferromagnetic) and B (ferro-
magnetic). The integrals for exchange between neighbouring ion pairs are arranged as follows:
+J for A–A bonds, −JF for B–B and A–B bonds. We first set JF = J , and investigate the
system with only one impurity with periodic boundary conditions. As an example, we show our
numerical results for the NN correlation functions near the isolated impurity at temperature
T = 0.05 for an 8 × 8 lattice in figure 3. Our results show that the quantum fluctuation
near the ferromagnetic impurity is also reduced, similarly to the case for the nonmagnetic
impurity. From figure 3, we obtain that the NN correlation function on the ferromagnetic bond
isC1 = 0.0825, which is quite close to the saturated valueC1 = 1/12 for the 2D homogeneous
ferromagnet. Comparing figure 3 with figure 1, we also find that the quantum fluctuation close
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Figure 3. The nearest-neighbour correlation functions for the 8 × 8 lattice with one ferromagnetic
impurity at temperature T/J = 0.05. The open circle represents the ferromagnetic impurity.

to the ferromagnetic impurity is weaker than that of the nonmagnetic impurity case.
We have also performed quantum Monte Carlo simulations for this system, using the

numerically exact stochastic series expansion algorithm with a recently introduced global
updating scheme [19]. Table 1 lists simulation results for lattices with 4×4, 8×8, and 16×16
spins, for two values of JF at temperature T/J = 0.05. This temperature is sufficiently low
to give the ground-state values of the short-range correlation functions. We also list results
obtained with the Green’s function approach. The Monte Carlo data show that finite-size
effects are minor for both C(1) and C(2). The Green’s function results for C(2) agree very
well with the QMC data. ForC(1) at JF /J = 1.0, there is an approximately 10% discrepancy,
and an even larger discrepancy at JF /J = 0.5. Such discrepancies most likely arose from
the decoupling scheme, equation (7), that we introduced. That approximation is good for the
majority of antiferromagnetic coupled spin pairs but it is a poor approximation for the one
ferromagnetic coupled bond which acts like a ‘stranger to the family’.

Table 1. Comparison of SOGF and QMC results for spin–spin correlation functions for two values
of JF .

JF /J = 1 JF /J = 0.5

Method Size C(1) C(2) C(1) C(2)

QMC 4 × 4 0.07528(3) −0.11810(2) 0.06930(2) −0.11965(2)
QMC 8 × 8 0.07411(6) −0.11459(6) 0.07027(3) −0.11530(3)
QMC 16 × 16 0.07375(3) −0.11409(3) 0.07032(2) −0.11477(3)
SOGF 8 × 8 0.0825 −0.1148 0.0515 −0.1150
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Next we study the temperature dependence of the spin correlation functionsC(1) andC(2)
and the effect of the relative strength JF /J in the range JF /J = [0, 1]. Results for C(1) and
C(2) calculated on an 8×8 lattice are plotted in figure 4. Squares show the results from quantum
Monte Carlo simulations while circles show the results from the second-order Green’s function
approach. Figure 4(a) shows the temperature dependence of these correlation functions for
JF /J = 1.0 and 0.5. As expected, the quantum fluctuation close to the impurity decreases
as temperatures increases. Figure 4(b) shows the dependence on the relative strength JF /J

at temperatures T/J = 0.25 and 1.0. The ferromagnetic correlation function C(1) increases
with JF /J ; that is, the quantum fluctuation closer to the impurity decreases as JF /J increases.
Figures 4(c) and 4(d) show results for C(2). The agreement between the SOGF and QMC
results is usually better for C(2) than C(1).
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Figure 4. The spin correlation function on the ferromagnetic bond, C(1), as a function of:
(a) temperature for JF /J = 1.00 (filled symbols) and 0.50 (open symbols); (b) the relative strength
JF /J at temperature T/J = 0.25 (filled symbols) and 1.00 (open symbols); and on the bond next
to the ferromagnetic bond, C(2): (c) as (a) but for C(2); (d) as (b) but for C(2). Squares show
results from quantum Monte Carlo simulations while circles show results from the second-order
Green’s function approach. The results shown were calculated on an 8 × 8 lattice.
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The spin-wave theory predicts that the behaviour of a spin-1/2 AF Heisenberg model on a
square lattice is controlled by the continuous spin-wave excitations around a state characterized
by LRO [20]. The continuous spin-wave excitations have been observed in the undoped
material La2CuO4 in neutron scattering [28] and Raman scattering [29] experiments. Our
improved SOGF theory also shows that, in the homogeneous case, there are continuous spin-
wave excitations ranged from zero to ω = 4.73J . After ferromagnetic impurities have been
added into an AF system, the ferromagnetic defects tend to align the background spins in some
range. That is, the local spin-wave excitations can form around the ferromagnetic impurities
in the AF system, and the corresponding energy of the local spin-wave excitation is higher
than those of the continuous spin-wave excitations. In addition, there is a discrete energy level
above the continuous spin-wave spectrum. The local spin-wave excitation is also called the
local mode. Since the energy of the local mode is much higher than that of the continuous
spin-wave excitations, it has little effect on the thermodynamic properties of the magnetic
system, while in the neutron scattering experiment, the energy of neutrons is high enough to
excite the local spin-wave excitation. It is expected that some new peaks will be observed in
the neuron scattering experiment. These peaks correspond to the local modes.

In the ferromagnetic impurity case, our SOGF calculations also show that there are discrete
local modes emerging above the continuous spin-wave excitations. In contrast, we found no
local mode in the nonmagnetic impurity case. These local modes are excited by the local
spin excitation around the ferromagnetic impurities (see below). For a system with one
ferromagnetic impurity, we found that there is only one corresponding local mode above
the continuous spin-wave excitations. In figure 5, we plot the temperature dependence of the
excitation energy of the local mode (filled circles) and the band top of the continuous spin-wave

0.0 0.5 1.0 1.5 2.0
T(J)

0.0

2.0

4.0

6.0

8.0

ω

Figure 5. The temperature dependence of the excitation energy of the local mode (filled circles)
and the band top of the spin-wave spectrum (open diamonds) in the one-ferromagnetic-impurity
case.
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excitations (diamonds). The excitation energy of the local mode decreases as temperature
increases. In the ground state, the energy gap between the local mode and the band top of
the spin-wave excitations is $ = 1.90. This gap decreases as the temperature increases.
Our results show that the local excitation around the ferromagnetic impurity is reduced as
temperature increases.

For a system with two ferromagnetic impurities, we found two corresponding local modes.
The excitation energy of these two local modes depends strongly on the relative position of
the two ferromagnetic impurities. That is, there is strong interaction among the local spin
excitations around these two ferromagnetic impurities. In our calculation, we found that the
AF Heisenberg system with two ferromagnetic impurities can be divided into two types, which
are shown in figure 6. It can be seen from figure 6(a) that the two ferromagnetic impurities are
on the same sublattice and they compose an effective triplet state (ETS), while in figure 6(b)
the two impurities are on the two different sublattices and they form an effective singlet state
(ESS). The distance dependences of the excitation energies of these two local modes for the
ETS and the ESS at temperature T/J = 0.05 are plotted in figures 7(a) and 7(b), respectively.
In figure 7(a), we found that there is a large energy gap between the two local modes of
the ETS as the two ferromagnetic impurities are very close. This gap decreases rapidly as
the distance between these two impurities increases. This means that the strong interaction
between the local spin excitations around the two ferromagnetic impurities drops quickly as
the two ferromagnetic impurities draw apart from each other. However, in figure 7(b), the
corresponding gap of the ESS is significantly smaller than that of the ETS. It is also clear that
the excitation energy of these two local modes in the ESS is smaller than that of the ETS.
Furthermore, we also found that the continuous spin-wave excitations for the AF background
are strongly affected by the appearance of these local modes. The band top of the continuous

(a)

(b)

Figure 6. Two kinds of antiferromagnetic system with two ferromagnetic impurities: (a) the two
impurities are in the same sublattice; (b) the two impurities are in different sublattices. Dashed
squares represent the two ferromagnetic impurities.
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Figure 7. The distance dependence of the excitation energy of the two local modes (filled and open
circles) and the band top of the spin-wave spectrum (open diamonds) in the two-ferromagnetic-
impurity cases ETS (a) and ESS (b).

spin-wave excitations of the ETS is Etop = 5.40J , which is larger than that of the ESS
(Etop = 4.75J ), while for the one-impurity case, Etop is equal to 5.00J . Thus we conclude
that the two ferromagnetic impurities prefer to form an ESS. In both figures 7(a) and 7(b), Etop

remains almost unchanged as the separation of these two impurities increases, which suggests
that the continuous spin-wave excitation spectrum is a characteristic property for both the ESS
and the ETS.

5. Summary

In conclusion, we have studied the 2D spin-1/2 Heisenberg model with nonmagnetic and
ferromagnetic impurities by using the improved second-order Green’s function theory and
quantum Monte Carlo simulations. The second-order Green’s function theory has been proved
to be applicable to spin systems with spatial inhomogeneity. For both nonmagnetic and
ferromagnetic impurity cases, results obtained from the Green’s function theory agree with
those from quantum Monte Carlo simulations. In our calculations, we found that the spatial
distributions of the antiferromagnetic correlation functions close to the isolated impurities
are enhanced in both the nonmagnetic and ferromagnetic cases. The quantum fluctuation
close to the isolated ferromagnetic impurity is weaker than that close to the nonmagnetic
impurity. For systems with ferromagnetic impurities, our results showed that there are local
modes emerging above the continuous spin-wave excitations. Each ferromagnetic impurity
can excite one corresponding local mode. When there are two ferromagnetic impurities in the
system, we found strong interaction between the two local modes, and this interaction depends
strongly on the relative position of the two ferromagnetic impurities. The antiferromagnetic
systems with two local ferromagnetic impurities can be divided into two types, one with an
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effective triplet state and the other one with an effective singlet state. Our numerical results
showed that two ferromagnetic impurities prefer to form an effective singlet state.
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